Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): 414-423, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437432

RESUMO

The extraction of 3D human pose and body shape details from a single monocular image is a significant challenge in computer vision. Traditional methods use RGB images, but these are constrained by varying lighting and occlusions. However, cutting-edge developments in imaging technologies have introduced new techniques such as single-pixel imaging (SPI) that can surmount these hurdles. In the near-infrared spectrum, SPI demonstrates impressive capabilities in capturing a 3D human pose. This wavelength can penetrate clothing and is less influenced by lighting variations than visible light, thus providing a reliable means to accurately capture body shape and pose data, even in difficult settings. In this work, we explore the use of an SPI camera operating in the NIR with time-of-flight (TOF) at bands 850-1550 nm as a solution to detect humans in nighttime environments. The proposed system uses the vision transformers (ViT) model to detect and extract the characteristic features of humans for integration over a 3D body model SMPL-X through 3D body shape regression using deep learning. To evaluate the efficacy of NIR-SPI 3D image reconstruction, we constructed a laboratory scenario that simulates nighttime conditions, enabling us to test the feasibility of employing NIR-SPI as a vision sensor in outdoor environments. By assessing the results obtained from this setup, we aim to demonstrate the potential of NIR-SPI as an effective tool to detect humans in nighttime scenarios and capture their accurate 3D body pose and shape.


Assuntos
Aprendizado Profundo , Humanos , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Fontes de Energia Elétrica , Luz
2.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960458

RESUMO

In this study, we investigate the application of generative models to assist artificial agents, such as delivery drones or service robots, in visualising unfamiliar destinations solely based on textual descriptions. We explore the use of generative models, such as Stable Diffusion, and embedding representations, such as CLIP and VisualBERT, to compare generated images obtained from textual descriptions of target scenes with images of those scenes. Our research encompasses three key strategies: image generation, text generation, and text enhancement, the latter involving tools such as ChatGPT to create concise textual descriptions for evaluation. The findings of this study contribute to an understanding of the impact of combining generative tools with multi-modal embedding representations to enhance the artificial agent's ability to recognise unknown scenes. Consequently, we assert that this research holds broad applications, particularly in drone parcel delivery, where an aerial robot can employ text descriptions to identify a destination. Furthermore, this concept can also be applied to other service robots tasked with delivering to unfamiliar locations, relying exclusively on user-provided textual descriptions.

3.
J Opt Soc Am A Opt Image Sci Vis ; 40(8): 1491-1499, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707104

RESUMO

In challenging scenarios characterized by low-photon conditions or the presence of scattering effects caused by rain, fog, or smoke, conventional silicon-based cameras face limitations in capturing visible images. This often leads to reduced visibility and image contrast. However, using near-infrared (NIR) light within the range of 850-1550 nm offers the advantage of reduced scattering by microparticles, making it an attractive option for imaging in such conditions. Despite NIR's advantages, NIR cameras can be prohibitively expensive. To address this issue, we propose a vision system that leverages NIR active illumination single-pixel imaging (SPI) operating at 1550 nm combined with time of flight operating at 850 nm for 2D image reconstruction, specifically targeting rainy conditions. We incorporate diffusion models into the proposed system to enhance the quality of NIR-SPI images. By simulating various conditions of background illumination and droplet size in an outdoor laboratory scenario, we assess the feasibility of utilizing NIR-SPI as a vision sensor in challenging outdoor environments.

4.
Rev Sci Instrum ; 92(11): 111501, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852525

RESUMO

Different imaging solutions have been proposed over the last few decades, aimed at three-dimensional (3D) space reconstruction and obstacle detection, either based on stereo-vision principles using active pixel sensors operating in the visible part of the spectra or based on active Near Infra-Red (NIR) illumination applying the time-of-flight principle, to mention just a few. If extremely low quantum efficiencies for NIR active illumination yielded by silicon-based detector solutions are considered together with the huge photon noise levels produced by the background illumination accompanied by Rayleigh scattering effects taking place in outdoor applications, the operating limitations of these systems under harsh weather conditions, especially if relatively low-power active illumination is used, are evident. If longer wavelengths for active illumination are applied to overcome these issues, indium gallium arsenide (InGaAs)-based photodetectors become the technology of choice, and for low-cost solutions, using a single InGaAs photodetector or an InGaAs line-sensor becomes a promising choice. In this case, the principles of Single-Pixel Imaging (SPI) and compressive sensing acquire a paramount importance. Thus, in this paper, we review and compare the different SPI developments reported. We cover a variety of SPI system architectures, modulation methods, pattern generation and reconstruction algorithms, embedded system approaches, and 2D/3D image reconstruction methods. In addition, we introduce a Near Infra-Red Single-Pixel Imaging (NIR-SPI) sensor aimed at detecting static and dynamic objects under outdoor conditions for unmanned aerial vehicle applications.

5.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833511

RESUMO

Recent advances have shown for the first time that it is possible to beat a human with an autonomous drone in a drone race. However, this solution relies heavily on external sensors, specifically on the use of a motion capture system. Thus, a truly autonomous solution demands performing computationally intensive tasks such as gate detection, drone localisation, and state estimation. To this end, other solutions rely on specialised hardware such as graphics processing units (GPUs) whose onboard hardware versions are not as powerful as those available for desktop and server computers. An alternative is to combine specialised hardware with smart sensors capable of processing specific tasks on the chip, alleviating the need for the onboard processor to perform these computations. Motivated by this, we present the initial results of adapting a novel smart camera, known as the OpenCV AI Kit or OAK-D, as part of a solution for the ADR running entirely on board. This smart camera performs neural inference on the chip that does not use a GPU. It can also perform depth estimation with a stereo rig and run neural network models using images from a 4K colour camera as the input. Additionally, seeking to limit the payload to 200 g, we present a new 3D-printed design of the camera's back case, reducing the original weight 40%, thus enabling the drone to carry it in tandem with a host onboard computer, the Intel Stick compute, where we run a controller based on gate detection. The latter is performed with a neural model running on an OAK-D at an operation frequency of 40 Hz, enabling the drone to fly at a speed of 2 m/s. We deem these initial results promising toward the development of a truly autonomous solution that will run intensive computational tasks fully on board.


Assuntos
Algoritmos , Redes Neurais de Computação , Computadores , Humanos , Movimento (Física)
6.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352997

RESUMO

Although a significant amount of work has been carried out for visual perception in the context of unmanned aerial vehicles (UAVs), not so much has been done regarding auditory perception. The latter can complement the observation of the environment that surrounds a UAV by providing additional information that can be used to detect, classify, and localize audio sources of interest. Motivated by the usefulness of auditory perception for UAVs, we present a literature review that discusses the audio techniques and microphone configurations reported in the literature. A categorization of techniques is proposed based on the role a UAV plays in the auditory perception (is it the one being perceived or is it the perceiver?), as well as a set of objectives that are more popularly aimed to be accomplished in the current literature (detection, classification, and localization). This literature review aims to provide a concise landscape of the most relevant works on auditory perception in the context of UAVs to date and provides insights into future avenues of research as a guide to those who are beginning to work in this field.


Assuntos
Aeronaves , Percepção Auditiva
7.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823503

RESUMO

Autonomous Drone Racing (ADR) was first proposed in IROS 2016. It called for the development of an autonomous drone capable of beating a human in a drone race. After almost five years, several teams have proposed different solutions with a common pipeline: gate detection; drone localization; and stable flight control. Recently, Deep Learning (DL) has been used for gate detection and localization of the drone regarding the gate. However, recent competitions such as the Game of Drones, held at NeurIPS 2019, called for solutions where DL played a more significant role. Motivated by the latter, in this work, we propose a CNN approach called DeepPilot that takes camera images as input and predicts flight commands as output. These flight commands represent: the angular position of the drone's body frame in the roll and pitch angles, thus producing translation motion in those angles; rotational speed in the yaw angle; and vertical speed referred as altitude h. Values for these 4 flight commands, predicted by DeepPilot, are passed to the drone's inner controller, thus enabling the drone to navigate autonomously through the gates in the racetrack. For this, we assume that the next gate becomes visible immediately after the current gate has been crossed. We present evaluations in simulated racetrack environments where DeepPilot is run several times successfully to prove repeatability. In average, DeepPilot runs at 25 frames per second (fps). We also present a thorough evaluation of what we called a temporal approach, which consists of creating a mosaic image, with consecutive camera frames, that is passed as input to the DeepPilot. We argue that this helps to learn the drone's motion trend regarding the gate, thus acting as a local memory that leverages the prediction of the flight commands. Our results indicate that this purely DL-based artificial pilot is feasible to be used for the ADR challenge.

8.
Sensors (Basel) ; 19(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766258

RESUMO

Multirotor micro air vehicles can operate in complex and confined environments that are otherwise inaccessible to larger drones. Operation in such environments results in airflow interactions between the propellers and proximate surfaces. The most common of these interactions is the ground effect. In addition to the increment in thrust efficiency, this effect disturbs the onboard sensors of the drone. In this paper, we present a fault-tolerant scheme for a multirotor with altitude sensor faults caused by the ground effect. We assume a hierarchical control structure for trajectory tracking. The structure consists of an external Proportional-Derivative controller and an internal Proportional-Integral controller. We consider that the sensor faults occur on the inner loop and counteract them in the outer loop. In a novel approach, we use a metric monocular Simultaneous Localization and Mapping algorithm for detecting internal faults. We design the fault diagnosis scheme as a logical process which depends on the weighted residual. Furthermore, we propose two control strategies for fault mitigation. The first combines the external PD controller and a function of the residual. The second treats the sensor fault as an actuator fault and compensates with a sliding mode action. In either case, we utilize onboard sensors only. Finally, we evaluate the effectiveness of the strategies in simulations and experiments.

9.
Sensors (Basel) ; 19(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510051

RESUMO

Audio analysis over an Unmanned Aerial Systems (UAS) is of interest it is an essential step for on-board sound source localization and separation. This could be useful for search & rescue operations, as well as for detection of unauthorized drone operations. In this paper, an analysis of the previously introduced Acoustic Interactions for Robot Audition (AIRA)-UAS corpus is presented, which is a set of recordings produced by the ego-noise of a drone performing different aerial maneuvers and by other drones flying nearby. It was found that the recordings have a very low Signal-to-Noise Ratio (SNR), that the noise is dynamic depending of the drone's movements, and that their noise signatures are highly correlated. Three popular filtering techniques were evaluated in this work in terms of noise reduction and signature extraction, which are: Berouti's Non-Linear Noise Subtraction, Adaptive Quantile Based Noise Estimation, and Improved Minima Controlled Recursive Averaging. Although there was moderate success in noise reduction, no filter was able to keep intact the signature of the drone flying in parallel. These results are evidence of the challenge in audio processing over drones, implying that this is a field prime for further research.

10.
Sensors (Basel) ; 19(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700031

RESUMO

High-Level Structure (HLS) extraction in a set of images consists of recognizing 3D elements with useful information to the user or application. There are several approaches to HLS extraction. However, most of these approaches are based on processing two or more images captured from different camera views or on processing 3D data in the form of point clouds extracted from the camera images. In contrast and motivated by the extensive work developed for the problem of depth estimation in a single image, where parallax constraints are not required, in this work, we propose a novel methodology towards HLS extraction from a single image with promising results. For that, our method has four steps. First, we use a CNN to predict the depth for a single image. Second, we propose a region-wise analysis to refine depth estimates. Third, we introduce a graph analysis to segment the depth in semantic orientations aiming at identifying potential HLS. Finally, the depth sections are provided to a new CNN architecture that predicts HLS in the shape of cubes and rectangular parallelepipeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...